The bibtex file of the reference methods can be downloaded from here.
Author | Year | Title | Journal | Volume | Number | Pages |
Universiv, O. S., Science, C., & Francisco, S. S. | 1997 | Solving the multiple instance problem with axis-parallel rectangles | Artificial intelligence | 89 | 1 | 31-71 |
Wang, J., & Edu, J. U. | 2000 | Solving the Multiple-Instance Problem : A Lazy Learning Approach | In Proc. 17th International Conf. on Machine Learning | 1119-1125 | ||
Chen, Y., Bi, J., Wang, J. Z., & Member, S. | 2006 | MILES : Multiple-Instance Learning via Embedded Instance Selection | 28 | 12 | 1–17 | |
Zhou, Z.-H., & Zhang, M.-L. | 2007 | Solving multi-instance problems with classifier ensemble based on constructive clustering | Knowledge and Information Systems | 11 | 2 | 155–170 |
Cheplygina, V., Tax, D. M. J., & Loog, M. | 2015 | Multiple instance learning with bag dissimilarities | Pattern Recognition | 48 | 1 | 264–275 |
Carbonneau, M., Granger, E., Raymond, A. J., & Gagnon, G. | 2016 | Robust multiple-instance learning ensembles using random subspace instance selection | Pattern Recognition | 58 | 83–99 | |
Wei, X., Wu, J., & Zhou, Z. | 2017 | Scalable Algorithms for Multi-Instance Learning | IEEE transactions on neural networks and learning systems | 28 | 4 | 975–987 |
Kucukasci, E. S. & Baydogan, M. G. | 2018 | Bag Encoding Strategies in Multiple Instance Learning Problems | Information Sciences | |||
Kucukasci, E. S., Baydogan, M. G. & Taskin, Z. C. | A Linear Programming Approach to Multiple Instance Learning | |||||
Kucukasci, E. S., Baydogan, M. G. & Taskin, Z. C. | Multiple Instance Classification via Quadratic Programming |